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Introduction

Thermostable Geobacillus stearothermophilus LDH

Active site

A standout biocatalyst in industrial

biotechnology due to its unique o

combination of thermostability, iy ge’ \jﬁ
catalytic efficiency, and Ta® PaN
adaptability. v

» Operational Stability and Reusability

» Versatility in Biocatalytic Applications

» Cost-Effective Production



Allostery

Tense ('T') State Activators Relaxed ('R') State

Low Activity High Activity

Conformational
change

+ Inhibitors



FBP binding site
(Fructose 1,6-bisphosphate)
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Catalytic pocket



MD simulation captured oligomeric state change

WT GsLDH without FBP WT GsLDH with FBP

Cai, Shulami, Stefani¢, Hrenar, Marsavelski,* Fishman* (2025) Protein Science (in revision)



Allen et al. (2000) Protein Engineering, Design and Selection *

Gel filtration

The dual role of FBP O
Specificity constant k_./K ., : :
GsLDHs (s mM) Ollgct)r:\erlc
-FBP +FBP state
Wild type 35+13 144 + 67 | Dimer/Tetramer
R104C/Q189L/N293S <= | Triple mutant 141 + 18 156 £ 59 Tetramer
@ Q189L 32+4 106 £ 19 Tetramer
4 .'4.‘ : ’- L -_‘7._;. e U | 1Y “ |
g W / Tetrameric structure is not enough to fully

restore catalytic efficiency. The binding of FBP or
introduced mutations are needed to induce

specifice conformational changes to govern the

high enzyme activity. y




RMSF

Overall
structure

Dihedral
angles

FBP-induced
conformational change

Pyruvate
binding

Binding
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High residues fluctuations without FBP
Backbone (Ca) Root Mean Square Fluctuation (RMSF)
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Cai, Shulami, Stefani¢, Hrenar, Marsavelski,* Fishman* (2025) Protein Science (in revision)



MDavocado: Fast Screening for Dihedral Angles
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Dihedral angles (backbone and side chain)

Backbone
dihedral angles

Side chain
dihedral angles
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MDavocado identified three critical regions
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FBP promotes and stabilizes H-bonds six possible H-bonds between

Arg155 and PYR shown in different

with FBP without FBP colors : . .
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N

Cai, Shulami, Stefani¢, Hrenar, Marsavelski,* Fishman* (2025) Protein Science (in revision)
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Microcalorimetry titration studies

Isothermal titration calorimetry (ITC)

The principle is the direct measurement of the heat change that occurs when two
molecules interact.
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FBP enhances cofactor binding

pcallsec

kcal mol of injectant

Cai, Shulami, Stefani¢, Hrenar, Marsavelski,*
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Q189L maintains tetramer without FBP

kcat/Km
GsLDHs (s'TmM-1)
-FBP +FBP
Wild type 35+13 144 + 67

Triple mutant| 141 £ 18 156 £ 39
Q189L 3214 106 £ 19

Oligomeric
state

ND |/3.5+0.6 Dimer
ND 1.4+0.4| Tetramer

ND 0.3+0.1| Tetramer

* No improved activity without FBP.

 Tetramer without FBP.

 Enhanced substrate inhibition in the
presence of FBP.
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Q189L enhances substrate inhibition
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Summary

« GsLDH tetramerization alone is insufficient for achieving allosteric regulation.
Specific conformational changes initiated by FBP are essential.

* FBP stabilizes key residues within the pyruvate binding site and affects three
critical regions on the dimer-dimer interface. It is also crucial for cofactor
binding affinity.

« The single-point mutant Q189L can retain the tetrameric structure of GsLDH
without FBP but does not exhibit allosteric behavior. Interestingly, the presence
of FBP with the Q189L mutation results in high substrate inhibition, which will

be further investigated.
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COMPUTATIONAL
CHEMISTRY
am DAY 2025
Integrating computational IR spectroscopy and principal
component analysis for monitoring mechanoenzymatic

Integrating Computational IR Spectroscopy and transformation of glycolic acid
Principal Component Analysis for Monitoring b Jemni sene e
Mechanoenzymatic Transformation of Glycolic Acid oo

Poly(glycolic acid) (PGA) is a bic polymer with i promise in and

i materials [1]. C i ized through high I-catalyzed processes,
PGA production typically involves esterification of glycolic acid followed by cyclization to glycolide and ring- O
opening polymerization [2]. However, these methods pose environmental and scalability concerns. An emerging 52

alternative is mechanoenzymatic synthesis using Candida antorctica lipase B (CALB) under solvent-free
conditions, offering a greener route.

Zrinka Pisonic¢, Jakov Borovec, Tomica Hrenar and -
Aleksandra Marsavelski

Reaction:

Experimental setup:

Monitoring: o Glycolic acid, immobilized CALB, silica
The reaction was monitored using attenuated total reflection infrared Vortex mixing conducted under vacuum
(ATR-FTIR) spectroscopy. To support spectral interpretation, theoretical o silica added for water absorption, driving
IR spectra of glycolic acid and glycolide were calculated using density equilibrium forward

functional theory (DFT) at the B3LYP-D3BJ/6-311++G(d,p) level. Principal
component analysis (PCA) was then applied to the experimental data to
distinguish between reactant and product phases. This combined
spectroscopic and computational approach enabled enhanced
resolution of overlapping bands and clear identification of reaction

products.
Results:
Figure 1. OFF calcuatod 1 pectra (B30P-D30/5 311 +Gld 8]

theortscal and exparimantal data

Fgure 2, and OFT-caudried W spectrin
olue).
Figure 3. €51 mass secirum
Conclusion: miture showing 4 domiant pesk # m/z 1330143, indude giycolic acd (), gheobdo (Pl, and the maction
2 componding o the deprotonated Snew dimer of ycoSc ackd miture (RS), Gasolved I ety aceate (EXOAC. The plate
Good between and IR spectra confirms ester, and 3 minar peak at myz 2651472, atiributod 1o the Was developed using 3 41 EXOACthanal (EIOH) mobke
the accuracy of computational predictions. desrotonated linea trenr.
Key vibrational modes were successfully identified and matched, validating Lo
the molecular structure, 3 V‘
Further optimization of reaction conditions is needed to enhance consistency A
and scalabllity. b Kelrroa:
> Overall, the study astrong for future 1] D. 1. A. Cameron, M. P. Shaver, Chem. Soc. Rev. 40 (2011) 1761-1776.
and application. (2] 5. W. Duchiron, E. Pollet, S. Givry, L. Avérous, RSC Adv. 5 (2015) 84627-84635.
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