

1926	Schrödinger equation (WFT)
1927	Heitler and London: first calculations in theoretical chemistry
1927	Thomas-Fermi method (first DFT)
1935	Pauling and Wilson: Introduction to Quantum Mechanics – with Applications to Chemistry
1944	Eyring, Walter, Kimball: Quantum Chemistry
1952	Coulson: Valence
1964	Hohenberg–Kohn theorem(s)
1965	Kohn-Sham equations: the beginning of modern DFT
1965	Wiberg: first general molecular mechanics (MM) program
1970	Pople (Carnegie Mellon University): Gaussian 70 (HF calculations)
1976	Allinger: MM1 and (in 1977) MM2 force fields
1980	Journal of Computational Chemistry
1987	Gaussian Inc.
1990s	First modern functionals (GGA, mGGA, hybrid functionals)
1992	Gaussian 1992/DFT

FIRST NOBEL PRIZE FOR COMPUTATIONAL CHEMISTRY (1998)

Walter Kohn

John A. Pople

3

4

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry."

Mihalić, CCDay 2019

LEVEL OF THEORY (MODEL CHEMISTRY)		
Ab initio (WFT), based on wave function (generally complex function of 4N variables)		
- Hartree-Fock (HF) – wave function is (Slater) determinant composed of spin-orbitals		
- post-Hartree-Fock (MPn, CI, CC) – wf is linear combination of Slater determinants		
Density functional theory (DFT), based on electron density (real function of 3 variables)		
In both cases, one-electron functions (orbitals) are used to facilitate the calculations. Orbi	itals	
are approximated by linear combination of simpler functions, elements basis sets. If basis	set is	
complete (infinte number of basis functions), the relationship is exact.		
Since we use noninfinite basis sets, various errors occur: BSSE, BSIE,		
Pople's designation of level of theory (model chemistry) consists of method and basis set:		
METHOD/BASIS SET		
Often higher level of theory is used for the energy calculation following the geometry opti	imization:	
METHOD-2/BASIS SET-2//METHOD-1/BASIS SET-1		
Mihalić, CCDay 2019	5	

RESOLUTION-OF-IDENTITY (RI) APPROXIMATION

For a molecule of fixed size, MP2 computational cost is dominated by the integral transformation from the atomic to the molecular orbital basis. In resolution-of-identity approximation (RI) (or density fitting, DF), this four-index transformation is circumvented by the integral approximation which reduces the required time without significant loss in accuracy. Using auxilary basis set, *P*, method approximates basis functions products $v\mu$ as

$$v(\mathbf{r})\mu(\mathbf{r}) \approx \sum c_{\nu\mu}^{P} P_{i}(\mathbf{r})$$

so that the four-index electron repulsion integrals

$$(\nu\mu|\rho\sigma) = \int \mu(\mathbf{r}_1)\nu(\mathbf{r}_1)\frac{1}{\mathbf{r}_{12}}\rho(\mathbf{r}_2)\sigma(\mathbf{r}_2)d\mathbf{r}_1d\mathbf{r}_2$$

can be approximated by simpler two- and three-index integrals.

For not too large molecules, the RI-MP2 treatment of electron correlation is so efficient that it lasts not much longer than the initial Hartree-Fock calculation, which, by the way, can also be sped up by the resolution of identity approximation (RI-JK).

9

LOCAL CORRELATION APPROXIMATION

Another way to speed up MP2 computations is to apply the local approximation. As electron repulsion between two products in the integral (μν|ρσ) depends inversely on the distance r₁₂ between two electrons, at large distances this interaction can be approximated or neglected. After localizing orbitals, LMP2 method considers only interactions of electrons in close orbitals. Edmiston and Krauss introduced the concept of PNOs, where the basic idea consists of using set of natural orbitals (NOs) to correlate each electron pair. This triggered the development of correlation methods based on PNOs. Program ORCA has two local methods, LPNO ("local pair natural orbital") and DLPNO ("domain based LPNO"), designed to provide 'results as close as possible to the canonical coupled-cluster results while gaining orders of magnitude of efficiency' (ORCA 4.1 manual). The DLPNO has linear scaling and is of similar accuracy as older LPNO method.

11

SCS-MP2 AND SOS-MP2 APPROXIMATIONS

Grimme (2003) introduced different scale factors for the same-spin (E_T) and opposite-spin pair (E_S) correlation energies, yielding the spin-component-scaled (SCS) MP2 method.

$$E_{\rm c} \approx E_{\rm c}^{\rm SCS-MP2} = p_{\rm S} E_{\rm S}^{(2)} + p_{\rm T} E_{\rm T}^{(2)}$$

Related to the SCS method is Head-Gordon's spin-opposite-scaled MP2 (SOS-MP2) method, which completely neglects the same-spin term and scales up the opposite-spin term. SOS-MP2 is order of magnitude faster than MP2 and SCS-MP2 methods.

MAD errors for bond dissociation energies (92 energies) (from Q-Chem web site: Y. Jung, 'MP2 and its Variants in Q-Chem')

Mihalić, CCDay 2019

<section-header><text><equation-block><equation-block><text><equation-block><equation-block><text>

Mihalić, CCDay 2019

DENSITY FUNCTIONAL THEORY (DFT)

Kohn and Hohenberg proved that the energy of molecular system is uniquelly determined by its electron density. Corresponding energy functional has three components: kinetic energy of electrons, nuclear-electron attraction and electron-electron repulsion.

$$E[\rho] = T[\rho] + V_{ne}[\rho] + V_{ee}[\rho]$$

Kohn and Sham considered a fictious system consisting od non-interactiong electrons (represented by KS orbitals, ϕ_i), which has the same electron density as the real system

$$\rho(\mathbf{r}) = \sum_{i}^{N} \left| \varphi_{i}(\mathbf{r}) \right|^{2}$$

For such a system, energy functional can be written as sum of three easily calculated terms, and unknown exchange-correlation term, $E_{\rm xc}$

$$E_{\text{DFT}}[\rho] = T_{\text{ni}}[\rho] + E_{\text{ne}}[\rho] + E_{\text{ce}}[\rho] + \frac{E_{\text{xc}}[\rho]}{E_{\text{xc}}[\rho]}$$

which is usually considered as a sum of two parts, exchange and correlation functionals.

$$E_{\rm xc}[\rho] = E_{\rm x}[\rho] + E_{\rm c}[\rho]$$

A hughe number of today existing approximations of exchange-correlation functional (DFAs) poses serious dilemma to non-specialist users.

Mihalić, CCDay 2019

15

	Marcel Swart's	s DFT2018 Pool	
	First Division	Second Division	
	B2PLYP	B3PW91	
Still used today!	→ B3LYP	BHandH	
	B3LYP-D	BLYP	
	B97-D	DSD-BLYP	
	B97M-V	DSD-PBEP86	
	BP86	LC-PBE	
	CAM-B3LYP	LDA	
	HSE	M06	
	LC-ωPBE	M06-L	
	M06-2X	OLYP	
	PBE	optB88-vdW	
	PBE-D	PW6B95	
	PBE0	revTPSS	
	PW91	revTPSS-D	
	PWPB96-D3	RPA	
	revPBE	RPBE	
	TPSSh	S12g	
	ωB97M-V	SAOP	
	ωB97X-D	SCAN	
	ωB97X-V	SSB-D	
Mihalic, CCDay 2019			19

<section-header><text><text><text><text><text><text>

