

Tracking excited electronic states in nuclear coordinate space

Marin Sapunar

Ruđer Bošković Institute

Introduction

What happens after photoexcitation?

Electronically nonadiabatic processes

- Breakdown of the BO approximation
- Multiple coupled potential energy surfaces

Semiclassical approaches

- $\cdot\,$ Ensemble of trajectories for nuclear motion R,v
- Electronic wave functions $|\psi_A(\mathbf{r};\mathbf{R})\rangle$
- Surface hopping dynamics

Adiabatic states:

- Electronic structure methods
- Unique, well defined
- Conical intersections and avoided crossings (sudden changes in electronic properties)

Diabatic states:

- Smooth (stable electronic character)
- Useful for interpreting results
- "Strict" diabatic states don't exist
- Not unique, hard to construct

Adiabatic states:

- Electronic structure methods
- Unique, well defined
- Conical intersections and avoided crossings (sudden changes in electronic properties)

Diabatic states:

- Smooth (stable electronic character)
- Useful for interpreting results
- "Strict" diabatic states don't exist
- Not unique, hard to construct

Goal: Use adiabatic states, but also keep track of electronic character

To compare wave functions at different geometries we need to be able to calculate matrix elements of the type:

$$\langle \psi_{A}(\mathbf{r};\mathbf{R}) | \psi_{B}(\mathbf{r};\mathbf{R}') \rangle = \langle \psi_{A} | \psi_{B}' \rangle$$

Assignment problem

Overlap matrix with phase matching between assigned bra/ket states:										
0.998	-0.000	-0.000	0.000	0.000	-0.000	0.000	0.000	0.069	0.000	0.000
0.000	0.994	0.096	0.000	0.000	-0.000	0.040	-0.000	-0.000	-0.015	0.000
-0.000	0.000	0.000	-0.536	-0.000	0.841	0.000	0.040	0.000	-0.000	0.059
-0.000	0.093	-0.992	-0.000	0.000	0.000	0.044	0.000	0.000	-0.070	0.000
-0.000	0.000	-0.000	0.842	-0.000	0.534	0.000	0.076	0.000	0.000	-0.010
-0.000	-0.000	0.000	0.000	1.000	0.000	-0.000	-0.000	-0.000	-0.000	0.000
-0.069	0.000	0.000	0.000	0.000	-0.000	0.000	-0.000	0.998	0.000	-0.000
-0.000	-0.037	0.024	-0.000	0.000	-0.000	0.973	-0.000	-0.000	0.227	-0.000
0.000	0.000	0.000	-0.058	0.000	-0.036	-0.000	0.817	0.000	-0.000	-0.573
-0.000	-0.000	0.000	0.009	0.000	-0.080	0.000	0.570	0.000	-0.000	0.818
0.000	-0.031	0.075	0.000	-0.000	-0.000	0.224	-0.000	0.000	-0.971	-0.000

Need to find pairs of adiabatic states at the two geometries which have the largest overlaps.

Overlap matri	x with p	hase mat	ching be	tween as	signed b	ra/ket s	tates:			
0.998	-0.000	-0.000	0.000	0.000	-0.000	0.000	0.000	0.069	0.000	0.000
0.000	0.994	0.096	0.000	0.000	-0.000	0.040	-0.000	-0.000	-0.015	0.000
-0.000	0.000	0.000	-0.536	-0.000	0.841	0.000	0.040	0.000	-0.000	0.059
-0.000	0.093	-0.992	-0.000	0.000	0.000	0.044	0.000	0.000	-0.070	0.000
-0.000	0.000	-0.000	0.842	-0.000	0.534	0.000	0.076	0.000	0.000	-0.010
-0.000	-0.000	0.000	0.000	1.000	0.000	-0.000	-0.000	-0.000	-0.000	0.000
-0.069	0.000	0.000	0.000	0.000	-0.000	0.000	-0.000	0.998	0.000	-0.000
-0.000	-0.037	0.024	-0.000	0.000	-0.000	0.973	-0.000	-0.000	0.227	-0.000
0.000	0.000	0.000	-0.058	0.000	-0.036	-0.000	0.817	0.000	-0.000	-0.573
-0.000	-0.000	0.000	0.009	0.000	-0.080	0.000	0.570	0.000	-0.000	0.818
0.000	-0.031	0.075	0.000	-0.000	-0.000	0.224	-0.000	0.000	-0.971	-0.000
Assignmen	t:									
Rows:	1234	5678	9 10 11							
Cols:	1263	4 5 9 7	8 11 10							

Need to find pairs of adiabatic states at the two geometries which have the largest overlaps.

Assignment problem: Solved using the Hungarian algorithm

Algorithm

Overlap of two sets of wave functions at different nuclear geometries

$$\begin{split} |\psi_{A}\rangle &= \sum_{i}^{n_{det}} d_{i}^{A} |\Phi_{i}\rangle \quad \text{and} \quad |\psi_{B}'\rangle = \sum_{j}^{n_{det}} d_{j}'^{B} |\Phi_{j}'\rangle \\ &\langle\psi_{A}|\psi_{B}'\rangle = \sum_{i}^{n_{det}} \sum_{j}^{n_{det}'} d_{i}^{A} d_{j}'^{B} \langle\Phi_{i}|\Phi_{j}'\rangle \end{split}$$

Slater determinants built from MOs which

- \cdot are not orthogonal
- do not span the same space

 $\langle \Phi_i | \Phi'_j \rangle$ is equal to the determinant of the overlaps of the orbitals. Scaling: $n_{det}n'_{det}n^3_o$

Overlap of two sets of wave functions at different nuclear geometries

$$\begin{split} |\psi_{A}\rangle &= \sum_{i}^{n_{det}} d_{i}^{A} |\Phi_{i}\rangle \quad \text{and} \quad |\psi_{B}'\rangle = \sum_{j}^{n_{det}} d_{j}'^{B} |\Phi_{j}'\rangle \\ &\langle\psi_{A}|\psi_{B}'\rangle = \sum_{i}^{n_{det}} \sum_{j}^{n_{det}'} d_{i}^{A} d_{j}'^{B} \langle\Phi_{i}|\Phi_{j}'\rangle \end{split}$$

Slater determinants built from MOs which

- \cdot are not orthogonal
- do not span the same space

 $\langle \Phi_i | \Phi'_j \rangle$ is equal to the determinant of the overlaps of the orbitals. Scaling: $n_{det} n'_{det} n_o^3$

This quickly becomes very expensive!

Solutions:

- Approximations
- \cdot More efficient algorithms

Solutions:

- Approximations
- More efficient algorithms

Specific problem: Overlap of two CIS type wave functions

$$|\Psi_{A}\rangle = \sum_{a}^{n} \sum_{i}^{m} d_{ai}^{A} \left| \Phi_{a}^{i} \right\rangle \quad \text{and} \quad \left| \Psi_{B}^{\prime} \right\rangle = \sum_{b}^{n} \sum_{j}^{m'} d_{bj}^{\prime B} \left| \Phi_{b}^{\prime j} \right\rangle$$
$$\left\langle \Psi_{A} \right| \Psi_{B}^{\prime} \right\rangle \propto \sum_{a}^{n} \sum_{b}^{n} \sum_{i}^{m} \sum_{j}^{m'} d_{ai}^{A} d_{bj}^{\prime B} \left\langle \Phi_{a}^{i} \right| \Phi_{b}^{\prime j} \right\rangle$$

Each overlap determinant is expanded into level 2 minors along the row/column corresponding to the virtual orbital to which the electron is excited.

$$\begin{split} \left\langle \Phi_{a}^{i} \middle| \Phi_{b}^{\prime j} \right\rangle &= \sum_{c \neq a}^{n} \sum_{d \neq b}^{n} o_{cj} o_{id} \operatorname{sgn}(b-d) \operatorname{sgn}(c-a) (-1)^{a+b+c+d} \left\langle \Phi_{a,c} \middle| \Phi_{b,d}^{\prime} \right\rangle \\ &+ o_{ij} (-1)^{a+b} \left\langle \Phi_{a} \middle| \Phi_{b}^{\prime} \right\rangle \end{split}$$

These minors contain only rows/columns corresponding to occupied orbitals so they can be reused for all virtual orbitals. Scaling: n^7 Alternative approach: Expand the wave functions in terms of natural transition orbitals (NTOs) before the overlap calculation

$$\begin{split} \left| \Psi_{A} \right\rangle &= \sum_{k}^{n} \lambda_{k}^{A} \left| \Theta_{k}^{A} \right\rangle \\ \left| \Psi_{B} \right\rangle &= \sum_{l}^{n} \lambda_{l}^{B} \left| \Theta_{l}^{B} \right\rangle \end{split}$$

Now we need to calculate only n^2 overlap determinants.

$$\sum_{k}^{n}\sum_{l}^{n}\lambda_{k}^{A}\lambda_{l}^{\prime B}\left\langle \Theta_{k}^{A}\middle|\Theta_{l}^{\prime B}\right\rangle$$

Scaling: $n^5 N_A N_B$

Scaling

Test case: alanine polypeptides

- 34 to 304 atoms
- 62 to 575 occupied orbitals
- 5 states (25 overlap matrix elements)

Scaling

Overlaps in photochemical studies

Spectra using the nuclear ensemble method

Excitation of an ensemble of nuclear geometries

- $\cdot\,$ Low computational cost and conceptually simple
- No vibronic features
- Contributions from each state?

Spectrum decomposition

- Reference states at GS minimum geometry
- 8000 geometries from Wigner distribution
- Good agreement with MCTDH spectrum
- Evidence of intensity borrowing

Optimization with state switching

Solvation effects

Study of effect of solvation on excited states of nucleobases

- ADC(2)/aug-cc-pVDZ
- $\cdot\,$ Gas phase and COSMO comparison
- Ground state nuclear ensemble

Solvation effects

S	E _{ref}	NTO ₁	E_{ρ}^{V}	E^{C}_{ρ}
S ₁	4.99	$n_1 \pi_1^*$	4.81± 0.28	5.09 ± 0.28
S ₂	5.10	$\pi_{1}\pi_{1}^{*}$	$4.92{\pm}~0.25$	4.84 ± 0.26
S ₃	5.12	$\pi_{1}\pi_{2}^{*}$	4.99 ± 0.18	4.97 ± 0.18
S ₄	5.38	$\pi_1 \text{Ryd}_1$	$5.29\pm$ 0.24	5.50 ± 0.21
S_5	5.63	$n_1 \pi_2^*$	5.54 ± 0.25	5.76 ± 0.24
S ₆	5.69	$\pi_1 \text{Ryd}_2$	5.63 ± 0.24	$\textbf{6.09} \pm \textbf{0.21}$
S ₇	5.96	n ₁ Ryd ₁	5.90 ± 0.26	6.35 ± 0.22
S_8	6.03	$n_2 \pi_2^*$	$5.89\pm$ 0.21	6.12 ± 0.22
S ₉	6.17	$\pi_1 \text{Ryd}_3$	6.12 ± 0.24	6.25 ± 0.23
S ₁₀	6.20	$\pi_{2}\pi_{1}^{*}$	$6.05\pm$ 0.19	5.96 ± 0.18
S ₁₁	6.40	n ₁ Ryd ₂	6.33 ± 0.25	$\textbf{7.01} \pm \textbf{0.23}$
S ₁₂	6.42	$\pi_1 \text{Ryd}_4$	6.36 ± 0.25	$\textbf{6.73} \pm \textbf{0.24}$
S ₁₃	6.46	$\pi_{1}\pi_{3}^{*}$	6.34 ± 0.22	$\textbf{6.39} \pm \textbf{0.23}$
S ₁₄	6.50	$\pi_2 \text{Ryd}_1$	$6.41{\pm}~0.23$	6.75 ± 0.20
S ₁₅	6.56	$\pi_1 \text{Ryd}_5$	$6.51{\pm}~0.24$	6.80 ± 0.23

Solvation effects

Conclusion

Wave function overlaps for TDDFT/ADC(2) can be calculated at almost no additional cost compared to the electronic structure calculation.

• Approximations are needed only for very large systems.

Overlaps are useful in all stages of studies of processes involving multiple electronic states.

- Electronic properties from nuclear ensemble
- Potential energy surface scans
- Method comparisons
- Dynamics

Ruđer Bošković Institute

- Nađa Došlić
- Davor Davidović
- Tomislav Piteša
- Funding
 - Croatian Science Foundation Grant number IP-2016-06-1142

Thank you for your attention! Questions?

