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Introduction



Photochemistry

What happens after photoexcitation?

Electronically nonadiabatic processes

- Breakdown of the BO approximation
- Multiple coupled potential energy surfaces

Semiclassical approaches

- Ensemble of trajectories for nuclear motion R, v
- Electronic wave functions [, (r; R))

- Surface hopping dynamics



Adiabatic and diabatic states

=== Adiabatic

Adiabatic states: U

=== Diabatic

- Electronic structure methods

la) Nat+cl™
- Unique, well defined

- Conical intersections and avoided LA

crossings (sudden changes in
electronic properties)

Diabatic states:
- Smooth (stable electronic character)
- Useful for interpreting results
- "Strict” diabatic states don't exist

- Not unique, hard to construct



Adiabatic and diabatic states

=== Adiabatic

Adiabatic states: U

=== Diabatic

- Electronic structure methods

la) Nat+cl™
- Unique, well defined

- Conical intersections and avoided LA

crossings (sudden changes in
electronic properties)

Diabatic states:
- Smooth (stable electronic character)
- Useful for interpreting results
- "Strict” diabatic states don't exist
- Not unique, hard to construct
Goal: Use adiabatic states, but also keep track of electronic character



State assignment
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State assignment

— Aa(ro®)  — Bi(3p,)
—— Bi(mwo™) —— Ba(mm*)
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State assignment
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Wave function overlaps

To compare wave functions at different geometries we need to be
able to calculate matrix elements of the type:

<¢A(r R)WJB (r; R > <¢A|¢B>



Assignment problem

Overlap matrix with phase matching between assigned bra/ket states:
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Need to find pairs of adiabatic states at the two geometries which
have the largest overlaps.



Assignment problem

Overlap matrix with phase matching between assigned bra/ket states:

-0.000 -0.000 ©0.000 ©0.000 -0.000 ©0.000 ©0.000 0.069 0.000 ©0.000
0.000 0.096 ©0.000 ©0.000 -0.000 ©0.040 -0.000 -0.000 -0.015 ©.000
-0.000 ©0.000 0.000 -0.536 -0.000 0.000 ©0.040 0.000 -0.000 0.059
-0.000 0.093 -0.000 ©0.000 0.000 0.044 0.000 0.000 -0.070 0.000
-0.000 0.000 -0.000 -0.000 0.534 0.000 ©0.076 ©0.000 ©0.000 -0.010
-0.000 -0.000 ©0.000 ©0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000
-0.069 ©0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 -0.037 0.024 -0.000 0.000 -0.000 -0.000 -0.000 0.227 -0.000
0.000 ©0.000 0.000 -0.058 0.000 -0.036 -0.000 0.000 -0.000 -0.573
-0.000 -0.000 0.000 ©0.009 0.000 -0.080 0.000 0.570 0.000 -0.000
0.000 -0.031 0.075 ©0.000 -0.000 -0.000 0.224 -0.000 ©0.000 -0.000
Assignment:
Rows: 1234567891011
Cols: 1263459781110

Need to find pairs of adiabatic states at the two geometries which
have the largest overlaps.
Assignment problem: Solved using the Hungarian algorithm



State assignment
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Algorithm



Wave function overlaps

Overlap of two sets of wave functions at different nuclear geometries

Nget ndet

[9a) = Zd»A |#;) and WB Zd/B

Ndet ndet

AL ZZd (o] @)

Slater determinants built from MOs which

- are not orthogonal
- do not span the same space

(;|®7) is equal to the determinant of the overlaps of the orbitals.

Scaling: NgetNler Ny



Wave function overlaps

Overlap of two sets of wave functions at different nuclear geometries

Nget ndet

[9a) = Zd»A |#;) and WB Zd/B

Ndet ndet

AL ZZd (o] @)

Slater determinants built from MOs which

- are not orthogonal
- do not span the same space

<¢,-}d>j> is equal to the determinant of the overlaps of the orbitals.
Scaling: NgetNler Ny

This quickly becomes very expensive!



Wave function overlaps

Solutions:

- Approximations
- More efficient algorithms



Wave function overlaps

Solutions:

- Approximations
- More efficient algorithms

Specific problem: Overlap of two CIS type wave functions
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OL2M Algorithm

Each overlap determinant is expanded into level 2 minors along the
row/column corresponding to the virtual orbital to which the
electron is excited.
n n
(05]07) = 3>~ 0g0igsen(b — d) sgn(c — a)(=1)" 7T (0, [} )
c#a d#b

+ O;j(—1)a+b <¢a |¢g>

These minors contain only rows/columns corresponding to occupied
orbitals so they can be reused for all virtual orbitals.

Scaling: n’



ONTO Algorithm

Alternative approach: Expand the wave functions in terms of natural
transition orbitals (NTOs) before the overlap calculation

v =30 fe)
k

vg) = 3¢ o)
[

Now we need to calculate only n’ overlap determinants.
n
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Scaling: n°NyNg



Test case: alanine polypeptides

+ 34 to 304 atoms
- 62 to 575 occupied orbitals
- 5 states (25 overlap matrix elements)
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Scaling

Time (s)
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Overlaps in photochemical
studies




Spectra using the nuclear ensemble method

Excitation of an ensemble of nuclear geometries

- Low computational cost and conceptually simple
- No vibronic features
- Contributions from each state?

Intensity
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Spectrum decomposition

Reference states at GS 12 1{a e
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Optimization with state switching
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Solvation effects

Study of effect of solvation on excited states of nucleobases

- ADC(2)/aug-cc-pVDZ
- Gas phase and COSMO comparison

- Ground state nuclear ensemble

16



Solvation effects

S  Egq NTO, E, E

S, 499 nm 481+£028 509+ 028
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Solvation effects

Particle NTO <22>
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Conclusion




Wave function overlaps for TDDFT/ADC(2) can be calculated at almost
no additional cost compared to the electronic structure calculation.

- Approximations are needed only for very large systems.

Overlaps are useful in all stages of studies of processes involving
multiple electronic states.

- Electronic properties from nuclear ensemble

- Potential energy surface scans

- Method comparisons

- Dynamics
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