CHEMISTRY
DAY 2023

Modelling Multidimensional PESs by Deep Reinforcement Learning

Dr. Karlo Sović
Department of Chemistry
University of Zagreb Faculty of Science

CHEMISTRY
DAY 2023

Machine and deep learning methods

Predicting molecular properties

Modelling electron and
charge density

Neural message passing

$3 / 26$

CHEMISTRY

- Content
- Modelling n-D PES cuts of benzene and pyrazine with respect to their normal coordinates

1) Using machine-learning MLR algorithm.
2) Using feed-forward multi-layer neural
 networks utilizing supervised and deep reinforcement learning.

Multiple linear regression

- Multiple linear regression (MLR) model has the form

$$
y_{i}=b_{0}+\sum_{j=1}^{p} b_{j} x_{i j}+e_{i}
$$

for $i \in\{1, \ldots, n\}$ where
$y_{i} \in \mathbb{R}$ is the real-valued response for the i-th observation $b_{0} \in \mathbb{R}$ is the regression intercept
$b_{j} \in \mathbb{R}$ is the j-th predictor's regression slope
$x_{i j} \in \mathbb{R}$ is the j-th predictor for the i-th observation
$e_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is a Gaussian error term.

MLR model in matrix notation

$$
y=X b+e
$$

$\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$ is the $n \times 1$ response vector $\boldsymbol{X}=\left[\mathbf{1}_{n}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right] \in \mathbb{R}^{n \times(p+1)}$ is the $n \times(p+1)$

design matrix

$\boldsymbol{b}=\left(b_{0}, b_{1}, \ldots, b_{p}\right)^{T} \in \mathbb{R}^{p+1}$ is the $(p+1) \times 1$
vector of coefficients
$\boldsymbol{e}=\left(e_{1}, \ldots, e_{n}\right)^{T} \in \mathbb{R}^{n}$ is the $n \times 1$ error vector

$$
y=X b+e
$$

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 p} \\
1 & x_{21} & x_{22} & \cdots & x_{2 p} \\
1 & x_{31} & x_{32} & \cdots & x_{3 p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right)+\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
\vdots \\
e_{n}
\end{array}\right)
$$

n - number of samples
p-number of independent variables

- Fitted values are given by

$$
\widehat{y}=X \widehat{b}
$$

and the residuals are given by

$$
\hat{e}=y-\widehat{y}
$$

- The ordinary least squares (OLS) problem is

$$
\min _{\boldsymbol{b} \in \mathbb{R}^{p+1}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}\|^{2}=\min _{\boldsymbol{b} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n}\left(y_{i}-b_{0}-\sum_{j=1}^{p} b_{j} x_{i j}\right)^{2}
$$

- The OLS solution has the form

$$
\widehat{\boldsymbol{b}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

Some of the algorithms for solving this equation include: SVD, QR decomposition, LU decomposition, Givens transformations, Cholesky decomposition, etc.

Relevant sum-of-squares

- In MLR models, the relevant sum-of-squares are

Sum-of-squares Total \quad SST $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
Sum-of-squares Regression $\quad \mathrm{SSR}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$
Sum-of-squares Error

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- The corresponding degrees of freedom are

SST: $d f_{T}=n-1$
SSR: $d f_{R}=p$
SSE: $d f_{E}=n-p-1$
The coefficient of multiple determination is defined as

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}
$$

- Including more predictors in MLR model can artificially inflate R^{2}

The adjusted R^{2} is a relative measure of fit

$$
\begin{aligned}
& R_{\text {adj. }}^{2}=1-\frac{\mathrm{SSE} / d f_{E}}{\mathrm{SST} / d f_{T}} \\
& R_{\text {pred. }}^{2} \rightarrow \begin{array}{l}
\text { average } R_{\text {adj. }}^{2} \text { LOO-CV }
\end{array} \text { from }
\end{aligned}
$$

Figure 1. Flowchart for machine-learning MLR algorithm implemented in moonee program.

Table 1. Calculated regression models of 1D cut of benzene's PES with respect to its $1^{\text {st }}$ normal coordinate using moonee ML-MLR algorithm.

| Degree of
 polynomial | $\mathbf{R}_{\text {pred. }}{ }^{2}$ | MSE |
| :---: | :---: | :---: | Regression model

$$
E=-2,32 \cdot 10^{2}
$$

$$
E=-3,51 \cdot 10^{-5} \mathbf{Q}_{1}-2,32 \cdot 10^{2}
$$

$E=4,91 \cdot 10^{-2} \boldsymbol{Q}_{1}{ }^{2}-2,32 \cdot 10^{2}$

Figure 2. Regreesion models of 1D cut of benzene's PES with respect to its $1^{\text {st }}$ normal coordinate (\boldsymbol{Q}_{1}) for $0^{\text {th }}$ degree polynomial (left), $1^{\text {st }}$ degree polynomial (center) and $2^{\text {nd }}$ degree polynomial (right) calculated using machine-learning MLR algorithm implemented in program moonee.

$E=-1,18 \cdot 10^{-5} \boldsymbol{Q}_{1}{ }^{3}+4,91 \cdot 10^{-2}$
$\boldsymbol{Q}_{1}{ }^{2}-2,32 \cdot 10^{2}$

$$
\begin{array}{r}
E=3,22 \cdot 10^{-3} \boldsymbol{Q}_{1}{ }^{4}+3,75 \cdot 10^{-2} \\
\boldsymbol{Q}_{1}{ }^{2}-2,32 \cdot 10^{2}
\end{array}
$$

$\begin{aligned} E= & -5,25 \cdot 10^{-4} \boldsymbol{Q}_{1}{ }^{6}+6,21 \cdot 10^{-3} \boldsymbol{Q}_{1}{ }^{4}+3,34 \\ & \cdot 10^{-2} \boldsymbol{Q}_{1}{ }^{2}-3,51 \cdot 10^{-5} \boldsymbol{Q}_{1}-2,32 \cdot 10^{2}\end{aligned}$

Figure 3. Regreesion models of 1D cut of benzene's PES with respect to its $1^{\text {st }}$ normal coordinate $\left(\boldsymbol{Q}_{1}\right)$ for $3^{\text {rd }}$ degree polynomial (left), $4^{\text {th }}$ degree polynomial (center) and $6^{\text {th }}$ degree polynomial (right) calculated using machine-learning MLR algorithm implemented in program moonee.

- Multiple linear regression (MLR) - Results

Table 2. Depicted regression models of 1D cuts of benzene's PES with respect to its normal coordinates calculated using moonee ML-MLR algorithm.

Normal coordinate	$\mathbf{R}_{\text {pred. }}^{2}$	MSE	Regression model
1	0,9998	$4,81 \cdot 10^{-7}$	$3,22 \cdot 10^{-3} \boldsymbol{Q}_{1}{ }^{4}+3,75 \cdot 10^{-2} \boldsymbol{Q}_{1}{ }^{2}-2,32 \cdot 10^{2}$
2	0,9998	$4,82 \cdot 10^{-7}$	3,16 $\cdot 10^{-3} \boldsymbol{Q}_{2}{ }^{4}+3,76 \cdot 10^{-2} \boldsymbol{Q}_{2}{ }^{2}-2,32 \cdot 10^{2}$
3	0,9989	$8,21 \cdot 10^{-6}$	$1,83 \cdot 10^{-1} \boldsymbol{Q}_{3}{ }^{2}+1,83 \cdot 10^{-3} \boldsymbol{Q}_{3}-2,32 \cdot 10^{2}$
4	0,9986	$7,70 \cdot 10^{-6}$	$1,83 \cdot 10^{-1} \boldsymbol{Q}_{4}{ }^{2}+3,14 \cdot 10^{-3} \boldsymbol{Q}_{4}-2,32 \cdot 10^{2}$
5	0,9994	$1,85 \cdot 10^{-6}$	$8,63 \cdot 10^{-3} \boldsymbol{Q}_{5}{ }^{4}+4,92 \cdot 10^{-2} \boldsymbol{Q}_{5}{ }^{2}-2,32 \cdot 10^{2}$
6	0,9996	2,59 $\cdot 10^{-6}$	1,22 $\cdot 10^{-1} \boldsymbol{Q}_{6}{ }^{2}-2,32 \cdot 10^{2}$
7	0,9996	7,17 $\cdot 10^{-7}$	$1,30 \cdot 10^{-2} \boldsymbol{Q}_{7}{ }^{4}+7,87 \cdot 10^{-2} \boldsymbol{Q}_{7}{ }^{2}-2,32 \cdot 10^{2}$
:	\vdots	:	!
30	0,9960	5,87 $\cdot 10^{-6}$	${ }_{-6,85} \cdot 10^{-1} \mathbf{Q}_{30}{ }^{3}+8,55 \cdot 10^{-1} \mathbf{Q}_{30}{ }^{2}-2,32 \cdot 10^{2}$

Table 3. Depicted regression models of 2D cuts of benzene's PES with respect to its normal coordinates calculated using moonee ML-MLR algorithm.

Normal coordinates	$\mathbf{R}^{\mathbf{2}}{ }_{\text {pred. }}$	MSE

$$
\begin{aligned}
E & =1,91 \cdot 10^{-1} \boldsymbol{Q}_{3}{ }^{2}+1,89 \cdot 10^{-1} \boldsymbol{Q}_{4}{ }^{2}+2,48 \cdot 10^{-3} \boldsymbol{Q}_{3} \boldsymbol{Q}_{4} \\
& -1,87 \cdot 10^{-3} \boldsymbol{Q}_{4}-2,32 \cdot 10^{2}
\end{aligned}
$$

$$
\begin{aligned}
E & =1,23 \cdot 10^{-1} \mathbf{Q}_{17}{ }^{2}+1,71 \cdot 10^{-1} \mathbf{Q}_{20}{ }^{2}+2,48 \cdot 10^{-3} \mathbf{Q}_{17} \boldsymbol{Q}_{20} \\
& -2,92 \cdot 10^{-3} \boldsymbol{Q}_{17}-2,32 \cdot 10^{2}
\end{aligned}
$$

Figure 4. Regression models of 2D cuts of benzene's PES with respect to its $3^{\text {rd }}$ and $4^{\text {th }}$ normal coordinates (left), and to its $17^{\text {th }}$ and $20^{\text {th }}$ normal coordinates (right) calculated using machine-learning MLR algorithm implemented in program moonee.

- A total of 524288 models up to $3^{\text {rd }}$ degree of polynomial were calculated for 3D cut of benzene's PES.
- A total of 16384 models up to $2^{\text {nd }}$ degree of polynomial were calculated for 4D cut of benzene's PES.

Table 4. Depicted regression model of 3D and 4D cut of benzene's PES with respect to its normal coordinates calculated using moonee ML-MLR algorithm.

Normal coordinates	$\mathbf{R}_{\text {pred. }}{ }^{\text {d }}$	MSE	Regression model
3,4,7	0,9991	7,69 $\cdot 10^{-6}$	$\begin{array}{r} 5,31 \cdot 10^{-3} \boldsymbol{Q}_{3}{ }^{3}+1,25 \cdot 10^{-2} \boldsymbol{Q}_{3} \boldsymbol{Q}_{7}{ }^{2}+2,11 \cdot 10^{-1} \boldsymbol{Q}_{3}{ }^{2} \\ +2,08 \cdot 10^{-1} \boldsymbol{Q}_{4}{ }^{2}-6,45 \cdot 10^{-3} \boldsymbol{Q}_{3}-2,32 \cdot 10^{2} \end{array}$
3,4,7,15	0,9961	$6,37 \cdot 10^{-5}$	$\begin{array}{r} 2,24 \cdot 10^{-1} \boldsymbol{Q}_{3}{ }^{2}+2,27 \cdot 10^{-1} \mathbf{Q}_{4}{ }^{2}+9,60 \cdot 10^{-2} \mathbf{Q}_{7^{2}}{ }^{2} \\ +1,31 \cdot 10^{-1} \boldsymbol{Q}_{15}{ }^{2}+3,80 \cdot 10^{-2} \boldsymbol{Q}_{3} \mathbf{Q}_{15} \\ +1,82 \cdot 10^{-3} \boldsymbol{Q}_{3}-5,97 \cdot 10^{-4} \boldsymbol{Q}_{15}-2,32 \cdot 10^{2} \end{array}$

DAY 2023

Figure 5. Graphical representation of a 5-layer feed-forward neural network with $5 \times 7 \times 7 \times 7 \times 3$ architecture.

- Commonly used activation functions

$$
\Phi_{1}(x)=\frac{1}{1+e^{-\alpha x}} \quad \Phi_{2}(x)=\tanh (\alpha x) \quad \Phi_{3}(x)=\left\{\begin{array}{c}
1, \text { if } x>0 \\
0, \text { if } x=0 \\
-1, \text { if } x<0
\end{array}\right.
$$

- The backpropagation algorithm first uses a forward phase in order to compute the output and the loss function.
- In supervised learning:

$$
\begin{aligned}
\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)^{T} & \rightarrow\left(o_{1}, o_{2}, \ldots, o_{N}\right)^{T} ;\left(d_{1}, d_{2}, \ldots, d_{N}\right)^{T} \\
L & =\frac{1}{2} \sum_{i=1}^{N}\left(o_{i}-d_{i}\right)^{2}
\end{aligned}
$$

- The backward phase computes the gradient of the loss function with respect to various weights. Subsequently, the derivatives are propagated in the backwards direction using the multivariable chain rule.

COMPUTATIONAL
CHEMISTRY

1) Supervised learning of neural network with defined architecture and data set.
2) Supervised learning of neural networks with combinatorial investigation of various architectures for a given data set.
3) Deep reinforcement learning of neural networks with defined architecture but with progressively increasing training set for a given data set.

- For a total of 4000 calculated NNs with different architecture, optimal was obtained for $1 \times(400)^{8} \times 1$ architecture with RMSE of $3,81 \cdot 10^{-4}$ hartree.

Figure 6. Neural network architecture analysis for modelling 1D cut of pyrazine's PES with respect to its $1^{\text {st }}$ normal coordinate.

CHEMISTRY
DAY 2023

- Neural networks (NN) - Results

Figure 7. Deep reinforcement learning of feed-forward neural network with $1 \times(400)^{8} \times 1$ architecture for modelling 1D cut of pyrazine's PES with respect to its $1^{\text {st }}$ normal coordinate.

COMPUTATIONAL
CHEMISTRY
DAY 2023

- Neural networks (NN) - Results
\square Training set \square Validation set \square Master set

Figure 8. Deep reinforcement learning of feed-forward neural network with $30 \times(400)^{8} \times 1$ architecture for modelling all 1D cuts of pyrazine's PES with respect to its normal coordinates.

Figure 9. Deep reinforcement learning of feed-forward neural network with $36 \times(400)^{8} \times 1$ architecture for modelling all 1D cuts of benzene's PES with respect to its normal coordinates.

- Concluding remarks
- 1-4D cuts of benzene's and pyrazine's PES were successfully modeled using machine-learning MLR with polynomial expansion of their normal coordinates.
- Multi-layer neural networks have shown a great potential in modelling PESs and are currently under major development for various implementations in quantum chemistry.
- Further research is needed for optimizing algorithms concerning neural network architecture analysis and for optimizing agent and policy in deep reinforcement learning.

Thank you for your attention!

