On the interface between experiment and computation, the experimentalists viewpoint

Gordan Horvat

Department of Chemistry, Faculty of Science, University of Zagreb

Calix[4]arene cation complexes, PhD thesis

Arduini et al., *Tetrahedron* **57** (2001) 2411–2417.

Arena et al., New J. Chem. 28 (2004) 56-61.

A. S. de Araujo, O. E. Piro, E. E. Castellano, A. F. Danil de Namor, J. Phys. Chem. A 112 (2008) 11885–11894.

Free calix[4]arene in acetonitrile

G. Horvat, V. Stilinović, T. Hrenar, B. Kaitner, L. Frkanec, V. Tomišić, Inorg. Chem. 51 (2012) 6264–6278.

Crystal structure vs MD

G. Horvat, V. Stilinović, T. Hrenar, B. Kaitner, L. Frkanec, V. Tomišić, *Inorg. Chem.* 51 (2012) 6264–6278.

MD structures of M⁺ calix[4]arene complexes

Interactions and structure

	Li ⁺		Na ⁺		K^+	
	$Li1^+$	Li1MeCN ⁺	$Na1^+$	Na1MeCN ⁺	$K1^+$	K1MeCN ⁺
$E(\mathbf{M}^+-\mathbf{L}) / \mathrm{kJ} \mathrm{mol}^{-1}$	-492	-507	_	-431	-353	-360
$E(L-MeCN) / kJ mol^{-1}$	-505	-561	_	-578	-508	-594
$E(L-MeCN_{inkl}) / kJ mol^{-1}$	_	-52	_	-51	_	-50
$E(M^+-MeCN) / kJ mol^{-1}$	-18	-15	_	-6	-3	1
$E(M^+-MeCN_{inkl}) / kJ mol^{-1}$	_	8	_	8	_	7
$t_{\rm total}$ / ns		50		50		50
$t / t_{\rm ukupno}$	0,009	0,991	0	1	0,001	0,999
N(carbonyl)	2,3	2,8	_	3,3	3,7	3,9
N(hydrogen bonds)	0,56	0,65	_	0,43	0,13	0,07
N(MeCN _{inkl})	_	6	_	1	_	4
$\overline{\mathbf{I}}$ / $\mathbf{\hat{x}}$	7,53	7,85		7,85	7,60	7,80
<i>a</i> / A	8,13	7,93	_	7,85	7,80	7,81
	0,41	0,22		0,21	0,38	0,20
$ a - a_{ref} / A$	0,46	0,23	_	0,21	0,45	0,21
-(-1) / Å	0,42	0,28		0,26	0,48	0,25
$\sigma(a) / A$	0,50	0,28	—	0,26	0,51	0,25

Calix[4]arene-cation complexes in benzonitrile

Li+

ITC			
Kation	$\log\left(\frac{K}{\mathrm{dm}^3\mathrm{mol}^{-1}}\right)\pm\mathrm{SE}$	$\frac{\left(\Delta_{\rm r} H^{ \Leftrightarrow} \pm {\rm SE}\right)}{\rm kJ \ mol^{-1}}$	$\frac{\left(\Delta_{r}S^{\textcircled{e}}\pm SE\right)}{J K^{-1} mol^{-1}}$
Li ⁺	$6,\!17 \pm 0,\!01$	$-8,9 \pm 0,1$	$88,1 \pm 0,4$
Na^+	$5,54 \pm 0,01$	$-16,6 \pm 0,1$	$50,4 \pm 0,5$
\mathbf{K}^+	a	a	a

 9%
 64%

G. Horvat, V. Stilinović, B. Kaitner, L. Frkanec, V. Tomišić, Inorg. Chem. 52 (2013) 12702–12712.

Cyclopeptide anion receptors

N. Vidović, G. Horvat, D. Riva, T. Rinkovec, N. Cindro, V. Tomišić, G. Speranza, Org. Lett. 2020, 22, 2129.

Cyclization yields

	Yield (%)					
linear peptide ^a	LiCl/NaCl	NaTPB	TEACl	NaClO ₄		
K4 (1)	21 ^b	8	47	0		
K5 (2)	35 ^c	26	43	0		
K6 (3)	15 ^c	10	17	0		
L5 (7)		15	52	0		
$(FLL)_2$ (8)	<5 ^c	6	23	<5		
I4 (11)	<5 ^b	<5	18	0		
I5 (12)	11^c	<5	26	0		
S5 (13)	21 ^c		29			
F5 (14)			46			

 δ / ppm

RESEARCH HIGHLIGHTS

Nature Reviews Chemistry | https://doi.org/10.1038/s41570-020-0185-0 | Published online 15 April 2020

Running rings around chloride

Thermodynamic and MD studies of anion complexation by cyclopentaleucine in MeCN and DMSO

0.0 Š -0.1 -0.2 [m / (H∆) 60 -0.3 t/min -0.4 ₹ 55 -0.5 -0.6 0.3 0.6 0.9 1.2 1.5 1.8 2.1 60 10 20 30 40 50 70 80 100 n(Cl⁻) / n(L)

Leu₅ titration with CI⁻ in MeCN

¹H NMR

ITC

G. Horvat, S. Tarana, N. Vidović, N. Cindro, G. Speranza, V. Tomišić, J. Mol. Liq. 2021, 340, 116848.

Cyclopeptide-anion complexation in MeCN

1:1 complexes

Anion	$\log\left(\frac{K}{\mathrm{dm}^3\mathrm{mol}^{-1}}\right)\pm\mathrm{SE}$	$\frac{\left(\Delta_{r}G^{\circ}\pm \mathrm{SE}\right)}{\mathrm{kJ}\ \mathrm{mol}^{-1}}$	$\frac{\left(\Delta_{i}H^{\circ}\pm\mathrm{SE}\right)}{\mathrm{kJ}\ \mathrm{mol}^{-1}}$	$\underbrace{\frac{\left(\Delta_{r}S^{\circ}\pm SE\right)}{J \text{ mol}^{-1} \text{ K}^{-1}}}$
Cl	$\fbox{5.84\pm0.03^a}$	-33.33 ± 0.11	-10.68 ± 0.08	75.9 ± 0.6
Br ⁻	4.70 ± 0.01^{a}	-26.82 ± 0.06	-4.84 ± 0.02	73.7 ± 0.2
Г	(3.20 ± 0.03^{a}) 3.12^{b}	-18.27 ± 0.15	1.91 ± 0.08	67.7 ± 0.3
SCN ⁻	2.90 ± 0.02^{a} 2.77^{b}	-16.5 ± 0.1	-4.72 ± 0.095	39.7 ± 0.7
NO ₃ -	$\begin{array}{c} 3.18 \pm 0.01^{a} \\ 3.29^{b} \end{array}$	-18.16 ± 0.04	-6.08 ± 0.04	40.5 ± 0.3

Complexes of higher stoichiometry

Anion	$\log\left(\frac{K}{\mathrm{dm}^{3}\mathrm{mol}^{-1}}\right)\pm\mathrm{SE}$	$\frac{\left(\Delta_{\rm r}G^{\circ}\pm{\rm SE}\right)}{\rm kJ\ mol^{-1}}$	$\frac{\left(\Delta_{\rm r} H^{\circ} \pm {\rm SE}\right)}{{\rm kJ}\ {\rm mol}^{-1}}$	$\frac{\left(\Delta_r S^\circ \pm SE\right)}{J \text{ mol}^{-1} \text{ K}^{-1}}$
450.	4.38 ± 0.02 (1:1)	-25.0 ± 0.1	-16.0 ± 0.1	30.2 ± 0.7
HSO4	2.96 ± 0.05 (2:1)	-16.9 ± 0.3	0.4 ± 0.3	58 ± 2
H ₂ PO ₄ ⁻	4.56 ± 0.02 (1:1)	-26.0 ± 0.1	-12.6 ± 0.3	45 ± 1
	4.18 ± 0.02 (1:2)	-23.8 ± 0.1	-79.7 ± 0.6	-187 ± 2

Structures of anion-Leu₅ complexes

endo complexes

Structure of free Leu₅ in MeCN

Average number of coordinated amide protons in MeCN

anion	Cl	Br	Ī	NO ₃	SCN	HSO ₄	$H_2PO_4^-$
N(-H)	4.98	4.98	4.88	4.95	4.77	4.75	4.97

Free energy calculations by MD

CCD2023 poster: Ivan Petranović

Anion-Sensing Properties of Cyclopentaphenylalanine

I. Petters, M. Modrušan, N. Vidović, I. Crnolatac, N. Cindro, I. Piantanida, G. Speranza, G. Horvat, V. Tomišić, *Molecules* 2022, 27, 3918.

Acknowledgements

Nikolina Vidović

Nikola Cindro

Giovanna Speranza

Matija Modrušan

Tamara Rinkovec

Siniša Tarana

Ivan Petters

Ivan Petranović

Tomislav Piteša

Vladimir Stilinović

Ivo Crnolatac

Ivo Piantanida

Vladislav Tomišić

MACROSO

IP-2019-04-9560

SupraCAR

IP-2014-09-7309

