Vibrational tunneling spectra of molecules via instanton theory

Marko Cvitaš

University of Zagreb

Mihael Eraković

Ruđer Bošković Institute

Vibrational tunneling spectra of molecules via instanton theory

Marko Cvitaš

University of Zagreb

Mihael Eraković

Ruđer Bošković Institute

Computational Chemistry Day 2022 Ruđer Bošković Institute 24.9.2022.

Outline

Symmetric double well:

- Localized well states interact via tunneling to produce a delocalized wavefunctions.
- 2 × 2 matrix model: $\mathbf{H} = \begin{pmatrix} 0 & h \\ h & 0 \end{pmatrix}$
- Eigenvalues : ±h.
- Eigenfunctions : $\psi_+ = \frac{1}{\sqrt{2}}\phi^{(L)} + \frac{1}{\sqrt{2}}\phi^{(R)}$

$$\psi_{-} = \frac{1}{\sqrt{2}}\phi^{(L)} - \frac{1}{\sqrt{2}}\phi^{(R)}$$

•Tunneling splitting: $\Delta = -2h$

Ε

Slightly asymmetric double well:

• 2 × 2 matrix model: $\mathbf{H} = \begin{pmatrix} 0 & h \\ h & d \end{pmatrix}$

• Tunneling splitting: $\Delta = \sqrt{d^2 + 4h^2}$

 $\tan(\varphi/2) = -\frac{h}{d}$

• Eigenfunctions:

$$\psi_{+} = \cos(\varphi) \phi^{(L)} + \sin(\varphi) \phi^{(R)}$$
$$\psi_{-} = \sin(\varphi) \phi^{(L)} - \cos(\varphi) \phi^{(R)}$$

Double well with large asymmetry:

Localized vibrational wavefunctions.

 $\psi_{+} \approx \phi^{(L)}$ $\psi_{-} \approx \phi^{(R)}$ $\varphi \approx 0$

Double well with large asymmetry:

• Interaction of non-equivalent vibrational states of different minima.

Double well with large asymmetry:

 Non-equivalent vibrational states of different minima in resonance.

1. Symmetric systems

- 1. Symmetric systems
- 2. Tunneling path asymmetry

- 1. Symmetric systems
- 2. Tunneling path asymmetry

- 1. Symmetric systems
- 2. Tunneling path asymmetry

- 1. Symmetric systems
- 2. Tunneling path asymmetry

- 1. Symmetric systems
- 2. Tunneling path asymmetry

- 2. Tunneling path asymmetry
- 3. Energy asymmetry (asymmetrically deuterated systems)

- 1. Symmetric systems
- 2. Tunneling path asymmetry
- 3. Energy asymmetry (asymmetrically deuterated systems)
- 4. Energy & shape asymmetry

- Physical systems with two or more energetically stable minima are ubiquitous in chemistry and physics.
- Bound states localized in such wells, separated by potential barriers, interact via tunneling, which results in observable shifts of their energies.
- These shifts are sensitive to PES away from the minima and can vary over many orders of magnitude even in a single system (*e.g.*, 3 orders of magnitude in water dimer for different pathways, or in water trimer and pentamer for different mode excitations).
- Variational methods are costly because basis set needs to cover regions between the wells sufficiently densely to obtain enough resolution to extract the energy shifts.
- Semiclassical *instanton method* : in full dimensionality
 - fewer PES evaluations
 - on-the-fly with accurate electronic structure methods
 - works better for high barriers and smaller energy shifts
 - black box: no basis set convergence, integral evaluations, ...
 - can be combined with more accurate dynamical methods

 $\mathbf{H}\Psi = E\Psi$

HERRING FORMULA

$$h_{ij} = -\frac{1}{2} \int_{\Sigma} \left(\phi_i^{(\mathrm{L})} \frac{\partial}{\partial S} \phi_j^{(\mathrm{R})} - \phi_j^{(\mathrm{R})} \frac{\partial}{\partial S} \phi_i^{(\mathrm{L})} \right) d\Sigma$$

3.5

2.5

1.5

0.5

3

2

1

0

3

2

MODIFIED WKB

Localized wavefunctions in Herring formula can be approximated using WKB:

$$h_{ij} = -\frac{1}{2} \int_{\Sigma} \left(\phi_i^{(L)} \frac{\partial}{\partial S} \phi_j^{(R)} - \phi_j^{(R)} \frac{\partial}{\partial S} \phi_i^{(L)} \right) d\Sigma$$

$$\phi = e^{-\frac{1}{\hbar}(W_0 + W_1\hbar)}$$

 $\frac{\partial W_0}{\partial x_i} \frac{\partial W_0}{\partial x_i} = 2V(\mathbf{x})$ $\frac{\partial W_0}{\partial x_i} \frac{\partial W_1}{\partial x_i} - \frac{1}{2} \frac{\partial^2 W_0}{\partial x_i \partial x_i} + E = 0$

Mil'nikov, Nakamura, JCP 2005.

MODIFIED WKB

Mil'nikov, Nakamura, JCP 2005.

MODIFIED WKB

Mil'nikov, Nakamura, JCP 2005.

Instanton theory excited state tunneling splittings

Mil'nikov, Nakamura, JCP 2005.

RING POLYMER INSTANTONS

 $S(x_1,\ldots,x_N) = \sum_{i=1}^{N} \left(\frac{1}{2} \frac{(x_i - x_{i+1})^2}{\Delta \tau^2} + V(x_i) \right) \Delta \tau$

Langer, 1967; Miller, 1975; Vainshtein, Zakharov, Novikov, Shifman, 1982

Langer, 1967; Miller, 1975; Vainshtein, Zakharov, Novikov, Shifman, 1982

RING POLYMER INSTANTONS

Discretized path integral formulation

JACOBI FIELD INSTANTONS

Continuous path integral formulation

$$\frac{d}{d\tau}A + A^2 = \Omega^2(\tau)$$

Langer, 1967; Miller, 1975; Vainshtein, Zakharov, Novikov, Shifman, 1982

MINIMUM ACTION PATH SEARCH

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 1

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 2

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 3

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 4

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 5

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 6

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 7

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 8

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 9

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 10

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 11

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 12

$$S_A = \int_{x_1}^{x_N} p dx = \sum_i \sqrt{2 \frac{V(x_{i+1}) + V(x_i)}{2}} |x_{i+1} - x_i|$$

- L-BFGS in *N* x *f* degrees of freedom.
- string method: *Cvitas, Althorpe, JCTC* 2016.
- quadratic string method: Cvitas, JCTC 2018.

LBFGS + string

iter = 13 - 17

- 1) Evaluate Hessians at beads along MAP.
- 2) Interpolate Hessian matrix elements.

3) Solve :
$$\frac{d}{d\tau}A + A^2 = \Omega^2(\tau)$$

4) Interpolate A.

5) Solve:
$$\frac{d}{d\tau}U = \omega_{\rm e}U - AU$$

6) Evaluate tunneling matrix elements *h*.

Can be computed using instantons

$$\begin{pmatrix} \phi_i^{(L/R)} | \hat{H} | \phi_j^{(R/L)} \rangle \\ \uparrow \\ \mathbf{h} \\ \mathbf{h}$$

Diagonal energies calculated using Vibrational Configuration interaction (VCI).

Malonaldehyde

Malonaldehyde

Hammer, Manthe, JCP 2012. Schroder, Meyer, JCP 2014.

Malonaldehyde on-the-fly

- On-the-fly calculation of S_0 and S_1 state of malonaldehyde.
- Collaboration with Marin Sapunar & Nada Došlić
- Cfour: CCSDT + cc-pVDZ
- N = 16 beads (S_0) and 20 beads (S_1)
- Experiment: S₁ splitting ±19 cm⁻¹ of ground state (Arias, Wasserman, Vaccaro, JCP 1997).
- $Exp(S_0)$: 21.6 cm⁻¹ (*Baba et al, JCP 1999*).

	$\Delta \ (\mathrm{cm}^{-1})$	Action (\hbar)
$S_0(\mathrm{Bow})$	24.6	6.13
S_0	20.6	5.85
S_1	2.9(-2)	13.40

- Potential: MB-pol (Babin et al, 2013) WHBB (Wang et al, 2009)
- Recent experiments: Cole et al 2016; Harker et al, 2005; Brown et al, 1998; Liu et al 1997; Cruzan et al, 1998

- G₃₂₀ analysed by Walsh & Wales, 1996
- Label minima using notation: UUDUD
- 5 positions for majority monomer
- 2 for U/D of majority monomer (DDUDU)
- 2⁵ positions of hydrogens (bifurcations)
- $5 \times 2 \times 2^5 = 320$ equivalent minima

Flip A / B :

Bifur A / B :

equivalent to A flip

Action = 16.30 < (14.76 + 1.64) = 16.40 a.u.

	<i>h /</i> cm ⁻¹	Action
A / B	50	1.64
A / B	4.7(-4)	14.76
A+E / C+B	5.0(-4)	16.30
<mark>B</mark> +C / E+A	2.2(-4)	15.65
C+BD / E+AD	1.7(-4)	17.27

A+BCDE Action = 28.63 a.u.

A+BCDE Action = 28.63 a.u. ↓ 0.06% contribution

equivalent to A flip A+BCDE = (A+E) + (D) + (C) + (B): Action = 16.30 + 3 x 1.64 = 21.22 a.u.

	composed of	equivalent to
A + BCDE	(<mark>A</mark> +E) + D + C + B	(<mark>A</mark> +E) + 3 x A
A + CDE	(A+E) + D + C	(<mark>A</mark> +E) + 2 x A
A + DE	(A+E) + D	(A+E) + A
B + ACDE	(<mark>B</mark> +C) + D + E + A	(<mark>B</mark> +C) + 3 x A
B + CDE	(<mark>B</mark> +C) + D + E	(<mark>B</mark> +C) + 2 x A
B + CD	(<mark>B</mark> +C) + D	(<mark>B</mark> +C) + A
C + ABDE	(<mark>C</mark> +BD) + E + A	(<mark>C</mark> +BD) + 2 x A
C + BDE	(<mark>C</mark> +BD) + E	(<mark>C</mark> +BD) + A
D + ABCE	B + (<mark>D</mark> +CE) + A	(<mark>C</mark> +BD) + 2 x A
D + BCE	B + (<mark>D</mark> +CE)	(<mark>C</mark> +BD) + A
E + ABCD	(<mark>E</mark> +AD) + C + B	(<mark>C</mark> +BD) + 2 x A
E + ACD	(<mark>E</mark> +AD) + C	(<mark>C</mark> +BD) + A

	<i>h /</i> cm⁻¹	Action
А / В	50	1.64
A / B	4.7(-4)	14.76
<mark>A+</mark> E / <mark>C</mark> +B	5.0(-4)	16.30
B+C / E+A	2.2(-4)	15.65
C+BD / E+AD	1.7(-4)	17.27

	<i>h</i> ∕ cm ⁻¹	Action
A / B	50	1.64
A / B	4.7(-4)	14.76
A+E / C+B	5.0(-4)	16.30
B+C / E+A	2.2(-4)	15.65
C+BD / E+AD	1.7(-4)	17.27

- Number 320 minima.
- Apply each symmetry operation on every minimum *i*, determine index *j* of the resulting minimum, and place *h* at H_{ij} in the tunnelling matrix H.
- Diagonalize H to obtain energy levels.
- State symmetries, degeneracies and nuclear-spin weights can be obtained from eigenvectors to deduce allowed transitions and their intensity patterns.

Brown, Keutsch, Saykally, JCP 1998.

- Mechanism other than A are responsible for marked decrease in the splitting for higher flip states. Decrease 17 x.
- Lowest flip state width increases 2.9x due to other mechanisms.
- Anomalous splitting pattern in intermediate flip states (unequal spacing).
- Width of the lowest flip state is 1.0x10⁻³ cm⁻¹ (1.6x10⁻⁴ cm⁻¹). Factor of 6.9 x . (In trimer: 3.8 x 9.6x10⁻³).
- Sextet splitting in D-pentamer is 2.5x10⁻⁶ cm⁻¹. Experiment: splitting < 1.0x10⁻⁵ cm⁻¹.
- KIE(H/D) bifurcation widths: 400 x
- KIE(¹⁶O/¹⁸O) bifurcation widths: 1.11 x

Water trimer: $D_2O(H_2O)_2$

Water trimer: $D_2O(H_2O)_2$

Water trimer: $D_2O(H_2O)_2$

 Lowest two levels in (H₂O)₃: 1100 MHz (289.4 MHz), and in (D₂O)₃: 3.9 MHz (5 MHz).

 Level of agreement comparable to homoisotopic trimers.

 The splitting of intermediate levels in HOD(D₂O)₂ is 6.5 x (7.6 x) smaller than the full width.

Erakovic, Cvitas, PCCP 2021.

Liu, Brown, Viant, Cruzan, Saykally, Mol. Phys. 1996.

Summary

- Tunneling matrix (TM) elements can be calculated using modified WKB for systems with asymmetric tunnelling paths and that are asymmetric in shape and energy.
- Theory can treat non-equivalent excitations in different wells.
- Instanton theory can be combined with higher-level quantum methods, such as VCI.
- Excited states come at no additional cost.
- Tunneling splittings in malonaldehyde quantitavely match exact quantum calculations.
- Instanton theory can semi-quantitatively describe TS in water pentamer and partially deuterated water trimer.
- TS in excited states of water clusters are within reach.
- Instantons are complementary to variational calculations because they work better for high barriers and small TM elements.
- Calculating TM elements using instanton theory is computationally cheap and relies on few potential evaluations, which leaves room for application to high-dimensional systems or using high-quality electronic potentials on-the-fly.

Outlook

- Extension of the theory to treat higher vibrational excitations.
- Inclusion of rotational degrees of freedom in the treatment.
- Application of the methodology to treat decay and rates.

Acknowledgements

Collaboration:

Nina Tokić (University of Zagreb) – poster P 8 Marin Sapunar (RBI) Nađa Došlić (RBI) Christophe Vaillant (EPFL) Jeremy Richardson (ETH) Stuart Althorpe (University of Cambridge)

Acknowledgements

Funding:

Croatian Science Foundation (HRZZ) project "QuanTunMol" (IP-2020-9932-02).

QuantiXLie Centre of Excellence cofinanced by the Croatian government and the European Union through the European Regional Development Fund

- Competitiveness and Cohesion Operational Program (No. KK.01.1.1.01.0004).

Thank you for listening