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Introduction

● Rapid development in machine learning and 

computer science allows for efficient profiling of 

enormous chemical spaces.

● Protein kinase inhibitors are one of the most 

popular groups of pharmacologically promising 

compounds.

● IDG-DREAM Drug-Kinase Binding Prediction 

Challenge



A. Dataset collection and preprocessing B. Representation of chemical spaces C. Building the model D-E. Scoring metrics; Applicability domain

Introduction



INDUCTIVE CONFORMAL PREDICTOR 
(ICP)

Outputs valid prediction 
intervals

Calibration set

Efficiency (1-δ)Exchangeability

Applicable for any model

Non-conformity function



Inductive conformal predictor (ICP)

Z = {(x1,y1),...,(xl,yl)}

For every tentative label ỹ, compute non-conformity 
score and p-value:

Given a significance level δ and a set of calibration 
scores S={𝛼1,...,𝛼i}, locate the smallest 𝛼s(δ)∊S that 
satisfies the equation:

Zt = {(x1,y1),...,(xm,ym)}

Zc = {(xm+1,ym+1),...,(xl,yl)}

For every calibration sample (xi,yi)∊ Zc

➔ Predict output value ŷi = hZ(xi)
➔ Calculate non-conformity scores (𝛼i)

Non-conformity function:

𝛼i = |yi-ŷi|

Shafer, G., Vovk, V., 2007. A tutorial on conformal prediction. Journal of Machine Learning Research 9. https://doi.org/10.1145/1390681.1390693



Inductive conformal predictor (ICP)

Compute 𝛼x scores for every tentative ỹx label?

    

1-εε

𝛼s

Johansson, U., Boström, H., Löfström, T., Linusson, H., 2014. Regression conformal prediction with random forests. Machine Learning 97, 1–22. https://doi.org/10.1007/s10994-014-5453-0



ICP + Normalisation measure

Where σj is an estimate of the accuracy of the 
underlying model for ŷj.

Other normalisation methods include:

    

1-εε

𝛼s

Papadopoulos, H., Haralambous, H., 2010. Neural Networks Regression Inductive Conformal Predictor and Its Application to Total Electron Content Prediction, in: Diamantaras, K., Duch, W., Iliadis, L.S. (Eds.), Artificial Neural Networks – ICANN 2010, Lecture Notes in  Computer 
Science. Springer, Berlin, Heidelberg, pp. 32–41. https://doi.org/10.1007/978-3-642-15819-3_4
Papadopoulos, H., Vovk, V., Gammerman, A., 2011. Regression Conformal Prediction with Nearest Neighbours. jair 40, 815–840. https://doi.org/10.1613/jair.3198



dAD
Dynamic Applicability Domain



Z = {(x1,y1),...,(xl,yl)}

Zc = {(x(ij),y(ij)) : x(ij) ⊂ (C,T) and Ǝy(ij) ⊂ Yt}

k=250; q=25

Where x(ij) represents a tuple (c(i), t(j)).

For every new test sample xi

➔ Predict output value ŷi = hZ(xi);
➔ Locate conformity region in the training space separately for 

compound (C) and target (T) space;
➔ Calculate non-conformity scores (𝛼i) for calibration samples based 

on cross-validation predictions (CV) or the sample mean (NN);
➔ Calculate non-conformity scores for xi towards each calibration 

example, (𝛼x).

𝛼cal = 𝛼i
nn = |yi

cal - ȳnn|, 𝛼nn∊ Snn

𝛼cal = 𝛼i
cv = |yi

cal - ŷcv|, 𝛼cv∊ Scv

𝛼i
x = |yi

cal - ŷ|, 𝛼x∊ Sx

Given a significance level δ and sets of non-conformity scores 

for calibration samples Si and test sample Sx, locate the 

smallest 𝛼i(δ) that satisfies the equation:

dAD
Dynamic Applicability Domain



Bioactivity space

We test this approach on four testing scenarios:

I. contains new compound-target pairs, S1; 

II. contains new compound-target pairs with 
compounds never seen in the training set, S2;

III. contains new compound-target pairs with targets 
never seen in the training set, S3;

IV. contains never seen compounds nor targets in the 
training set, S4.



+ MAPK

dAD
Dynamic Applicability Domain



Baseline comparison



Baseline comparison



Test scenarios (S1-S4) Benchmarks

Baseline comparison



dAD (CV) vs. dAD (NN)

Baseline 
comparison



Concluding remarks

➔ dAD depends on a sample specific calibration 

set;

➔ Calibration set is defined by the conformity of 

test compounds and targets individually;

➔ Output consists of sample specific prediction 

regions, with no need for additional 

normalisation measures;

➔ Provides robust guarantees for suggested 

prediction regions, and more accurately 

reflects model performance in the training 

area close to the test sample;

➔ Proved to be more effective for challenging 

prediction settings reflecting real use-case 

scenarios (S2 and S3).
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Thank you for your attention!


