

"Compound-kinase binding affinity prediction with confidence guarantees"

Davor Oršolić, Tomislav Šmuc

Laboratory for Machine Learning and Knowledge Representation Ruđer Bošković Institute

Introduction

 Rapid development in machine learning and computer science allows for efficient profiling of enormous chemical spaces.

• Protein kinase inhibitors are one of the most popular groups of pharmacologically promising compounds.

• IDG-DREAM Drug-Kinase Binding Prediction Challenge

Introduction

Inductive conformal predictor (ICP)

$$Z = \{(x_{1}, y_{1}), \dots, (x_{p}, y_{p})\}$$

$$\begin{cases} Z^{t} = \{(x_{1}, y_{1}), \dots, (x_{m}, y_{m})\} \\ Z^{c} = \{(x_{m+1}, y_{m+1}), \dots, (x_{p}, y_{p})\} \end{cases}$$

For every calibration sample $(x_i, y_j) \in Z^c$

- → Predict output value $\hat{y}_i = h_z(x_i)$
- → Calculate non-conformity scores (α_i)

Non-conformity function:

$$\alpha_i = |y_i - \hat{y}_i|$$

For every tentative label \tilde{y} , compute non-conformity score and p-value:

$$p(ilde{\mathrm{y}}) = rac{\# \left\{ z_i \in Z^c \, \Big| \, lpha_i \geq lpha_j^{ ilde{\mathrm{y}}}
ight\} + 1}{|Z^c| + 1}, \, p(ilde{\mathrm{y}}) < \delta$$

Given a significance level δ and a set of calibration scores $S = \{\alpha_1, ..., \alpha_i\}$, locate the smallest $\alpha_{s(\delta)} \in S$ that satisfies the equation:

$$rac{\#ig\{z_i\in Z^c\,ig|\,lpha_i$$

Inductive conformal predictor (ICP)

$$\frac{\#\{z_i \in Z^c \mid \alpha_i < \widehat{\alpha_{s(\delta)}}\} + 1}{|Z^c| + 1} \ge 1 - \delta$$

$$\Gamma_j^{\delta} = \hat{y}_j \pm \alpha_{s(\delta)}$$

Compute $\boldsymbol{a}_{\mathbf{x}}$ scores for every tentative $\hat{y}_{\mathbf{x}}$ label?

$$\Gamma_j^{\delta} = \hat{y}_j \pm \alpha_{s(\delta)}$$

samples

ICP + Normalisation measure

$$egin{aligned} rac{\#ig\{z_i\in Z^c\,ig|\,lpha_i$$

Where σ_j is an estimate of the accuracy of the underlying model for \hat{y}_j .

Other normalisation methods include:

$$lpha_i = |rac{y_i - \hat{y_i}}{\gamma + \lambda_j^k}| \qquad \qquad lpha_i = |rac{y_i - \hat{y_i}}{\gamma + \xi_j^k}|$$

$$\Gamma_j^\delta = h_z(x_j) \pm rac{lpha_{s(\delta)}}{\sigma_j}$$

Papadopoulos, H., Haralambous, H., 2010. Neural Networks Regression Inductive Conformal Predictor and Its Application to Total Electron Content Prediction, in: Diamantaras, K., Duch, W., Iliadis, L.S. (Eds.), Artificial Neural Networks – ICANN 2010, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 32–41. https://doi.org/10.1007/978-3-642-15819-3_4 Papadopoulos, H., Vok, V., Gammermann, A., 2011. Regression Conformal Prediction with Nearest Neighbours. jair 40, 815–840. https://doi.org/10.1613/jair.3198

dAD **Dynamic Applicability Domain**

$$Z = \{(x_{i}, y_{i}), \dots, (x_{p}, y_{p})\}$$
$$Z^{c} = \{(x^{(ij)}, y^{(ij)}) : x^{(ij)} \subset (C, T) \text{ and } \mathcal{I}y^{(ij)} \subset Y^{t}\}$$
$$k = 250; \ q = 25$$

 $\alpha^{cal} = \alpha_i^{nn} = |y_i^{cal} - \bar{y}^{nn}|, \ \alpha^{nn} \in S^{nn}$ $\alpha^{cal} = \alpha_i^{cv} = |y_i^{cal} - \hat{y}^{cv}|, \ \alpha^{cv} \in S^{cv}$ $\alpha_i^x = |y_i^{cal} - \hat{y}|, \ \alpha^x \in S^x$

Where $x^{(ij)}$ represents a tuple $(c^{(i)}, t^{(j)})$.

For every new test sample x_i

- \rightarrow
- Predict output value $\hat{y}_i = h_z(x_i)$; Locate conformity region in the training space separately for →
- compound (C) and target (T) space; Calculate non-conformity scores (α_i) for calibration samples based on cross-validation predictions (CV) or the sample mean (NN); Calculate non-conformity scores for x_i towards each calibration \rightarrow
- → example, (α) .

Given a significance level δ and sets of non-conformity scores for calibration samples S_i and test sample $S_{r'}$ locate the smallest $\alpha_{i(\delta)}$ that satisfies the equation:

$$\frac{\#\big\{z^{(ij)}\in Z^c\,\big|\,\alpha_x<\alpha_{i(\delta)}\big\}+1}{|Z^c|+1}\geq 1-\delta$$

Bioactivity space

We test this approach on four testing scenarios:

- I. contains new compound-target pairs, **S1**;
- II. contains new compound-target pairs with compounds never seen in the training set, **S2**;
- III. contains new compound-target pairs with targets never seen in the training set, **S3**;
- IV. contains never seen compounds nor targets in the training set, **S4**.

					SCKBA						
		Me	dian	Error rates per confidence level (%)							
Approach	SX	α_{δ}	#calib	75%	80%	85%	90%	95%	99%		
	S1	0.86	4000	21.83	16.34	11.91	6.56	3.66	0.76		
Chafar & Vault (7)	S2	0.86	4000	40.64	35.08	30.27	21.60	12.41	2.57		
Shaler & VOVK (7)	S3	0.86	4000	35.49	31.73	26.02	18.95	11.43	3.91		
	S4	0.86	4000	86.17	84.50	81.83	80.00	$\begin{array}{r} (\%) \\ \hline 95\% \\ \hline 3.66 \\ 12.41 \\ 11.43 \\ 72.83 \\ \hline 1.37 \\ 7.17 \\ 2.41 \\ 41.00 \\ \hline 5.50 \\ 7.49 \\ 5.86 \\ 2.67 \\ \hline 4.12 \\ 17.11 \\ 10.53 \\ 76.5 \\ \hline 0.62 (.74) \\ 1.28 (.59) \\ 4.76 (.79) \\ 39.22 (.98) \\ \hline 0.42 (.36) \\ 1.34 (.40) \\ 3.81 (.43) \\ 45.41 (.69) \end{array}$	49.17		
	S1	2.41	4000	7.02	4.43	3.21	2.14	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	0.31		
Developmentary (9)	S2	1.66	4000	21.93	17.86	14.65	10.80	7.17	1.07		
Papadopoulos (8)	S 3	2.33	4000	10.83	7.67	6.32	4.21	2.41	0.15		
	S4	1.47	4000	78.5	73.83	68.33	59.67	41.00	7.33		
	S1	1.02	4000	19.69	15.73	10.84	7.33	5.50	1.68		
Dens densed as (0)	S2	1.13	4000	30.16	24.39	19.68	13.69	7.49	1.39		
Papadopoulos (9)	S 3	1.55	4000	22.71	18.35	14.74	10.68	5.86	1.20		
	S4	3.32	4000	33.83	25.17	17.17	6.33	%) 95% 3.66 12.41 11.43 72.83 1.37 7.17 2.41 41.00 5.50 7.49 5.86 2.67 4.12 17.11 10.53 76.5 0.62 (.74) 1.28 (.59) 4.76 (.79) 39.22 (.98) 0.42 (.36) 1.34 (.40) 3.81 (.43) 45.41 (.69)	0.00		
	S 1	0.85	4000	22.60	16.49	12.98	7.79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.22		
Demoderation (10)	S2	0.55	4000	43.10	37.75	32.09	25.67	17.11	5.67		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.54	10.53	3.01								
	S4	0.78	4000	87.83	85.83	84.33	81.50	(%) 95% 3.66 12.41 11.43 72.83 1.37 7.17 2.41 41.00 5.50 7.49 5.86 2.67 4.12 17.11 10.53 76.5 0.62 (.74) 1.28 (.59) 4.76 (.79) 39.22 (.98) 0.42 (.36) 1.34 (.40) 3.81 (.43) 45.41 (.69)	55.17		
	S1	1.85	315	1.87 (.73)	1.65 (.74)	0.79 (.77)	1.00 (.76)	0.62 (.74)	0.00 (.63)		
dad (NIN)	S2	1.78	261	8.76 (.74)	6.72 (.70)	3.54 (.63)	2.94 (.58)	1.28 (.59)	0.36 (.60)		
dad (INN)	S 3	1.65	268	11.90 (.69)	10.11 (.71)	8.07 (.73)	6.03 (.77)	4.76 (.79)	1.03 (.73)		
	S4	1.79	259	70.70 (.26)	68.40 (.38)	60.47 (56)	52.27 (.84)	39.22 (.98)	12.69 (.87)		
	S 1	1.61	315	1.73 (.62)	1.79 (.60)	1.08 (.56)	1.23 (.50)	0.42 (.36)	0.00 (.20)		
dAD (CV)	S2	1.60	266	9.31 (.61)	8.01 (.57)	4.75 (.50)	3.23 (.46)	1.34 (.40)	0.34 (.31)		
dAD (CV)	S 3	1.43	268	12.71 (.64)	12.02 (.63)	9.74 (.59)	7.65 (.55)	3.81 (.43)	0.00 (.21)		
		52.3 (.76)	45.41 (.69)	10.42 (.40)							

5				Benchmark	datasets (KI)		11				
		Me	edian		Error rates per confidence level (%)						
Dataset	Approach	α_{δ}	#calib	75%	80%	85%	90%	95%	99%		
Dataset Davis KIBA BindingDB ChEMBL	Shafer & Vovk (7)	0.75	1500	23.86	19.28	14.43	9.77	4.13	0.76		
	Papadopoulos (8)	1.92	1500	13.12	10.36	7.63	5.32	2.76	0.91		
Dataset Approach Q Dataset Approach Q Shafer & Vovk (7) 0.7 Papadopoulos (8) 1.9 Papadopoulos (9) 0.7 Papadopoulos (9) 0.7 Papadopoulos (10) 0.7 dAD (CV) 1.1 dAD (CV) 1.1 dAD (NN) 1.3 Papadopoulos (10) 0.7 Papadopoulos (8) 2.0 Papadopoulos (8) 2.0 Papadopoulos (9) 0.5 Papadopoulos (9) 0.5 Papadopoulos (10) 0.5 dAD (CV) 1.3 dAD (NN) 1.4 Papadopoulos (9) 0.8 Papadopoulos (9) 0.8 Papadopoulos (10) 1.2 Papadopoulos (10)	0.76	1500	23.13	18.46	13.61	9.03	3.73	0.65			
Davis	Papadopoulos (10)	0.76	1500	26.08	21.77	17.61	12.78	6.28	1.36		
Davis KIBA BindingDB	dAD (CV)	1.10	502	3.56 (.34)	3.33 (.52)	3.30 (.71)	3.04 (.80)	2.21 (.77)	0.87 (.46)		
	dAD (NN)	1.30	502	3.43 (.33)	3.25 (.52)	3.24 (.71)	2.81 (.83)	$\begin{array}{c} \text{evel } (\%) \\ \hline 95\% \\ 4.13 \\ 2.76 \\ 3.73 \\ 6.28 \\ 0) \ 2.21 \ (.77) \\ 3) \ 1.87 \ (.91) \\ 4.79 \\ 2.34 \\ 4.66 \\ 5.77 \\ 1) \ 0.39 \ (.84) \\ 6) \ 0.39 \ (.98) \\ \hline 5.00 \\ 5.13 \\ 23.01 \\ 7.45 \\ 4) \ 1.86 \ (.39) \\ 7) \ 1.54 \ (.65) \\ \hline 4.51 \\ 1.83 \\ 4.91 \\ 5.86 \\ 3) \ 0.62 \ (.40) \\ 6) \ 0.43 \ (.83) \\ \end{array}$	0.48 (.91)		
	Shafer & Vovk (7)	0.58	3000	23.96	19.08	14.73	9.41	4.79	0.94		
	Papadopoulos (8)	2.00	3000	8.65	6.92	5.55	3.82	2.34	1		
KIBA	Papadopoulos (9)	0.58	3000	23.62	18.96	14.51	9.42	4.66	0.91		
	Papadopoulos (10)	0.58	3000	24.85	20.01	15.73	10.23	5.77	1.46		
	dAD (CV)	1.30	1661	3.77 (.73)	2.62 (0.80)	1.99 (.87)	1.04 (.91)	0.39 (.84)	0.09 (.46)		
	dAD (NN)	1.47	1661	3.60 (.72)	2.46 (.81)	1.85 (.90)	0.96 (.96)	el (%) 95% 4.13 2.76 3.73 6.28 2.21 (.77) 1.87 (.91) 4.79 2.34 4.66 5.77 0.39 (.84) 0.39 (.98) 5.00 5.13 23.01 7.45 1.86 (.39) 1.54 (.65) 4.51 1.83 4.91 5.86 0.62 (.40) 0.43 (.83)	0.1 (.93)		
Dataset Davis KIBA BindingDB ChEMBL	Shafer & Vovk (7)	1.26	3000	23.36	28.85	13.08	8.84	5.00	0.84		
	Papadopoulos (8)	2.09	3000	13.48	11.37	8.84	6.9	5.13	3.85		
	Papadopoulos (9)	0.84	3000	37.41	34.79	31.12	27.28	23.01	12.88		
BindingDB	Papadopoulos (10)	1.24	3000	25.52	21.6	16.42	11.78	7.45	1.83		
Dataset Davis KIBA BindingDB ChEMBL	dAD (CV)	1.55	133	9.06 (.58)	6.72 (.55)	5.45 (.49)	3.54 (.44)	1.86 (.39)	0.80 (.27)		
	dAD (NN)	1.33	133	8.64 (.73)	6.08 (.71)	4.58 (.68)	3.09 (.67)	vel (%) 95% 4.13 2.76 3.73 6.28)) 2.21 (.77) 3) 1.87 (.91) 4.79 2.34 4.66 5.77 1) 0.39 (.84) 6) 0.39 (.98) 5.00 5.13 2.3.01 7.45 4,16 5.13 2.3.01 7.45 4,51 1.88 4.91 5.86 3) 0.62 (.40) 6) 0.43 (.83)	0.61 (.48)		
	Shafer & Vovk (7)	0.91	3000	24.62	19.27	13.92	9.40	4.51	0.99		
	Papadopoulos (8)	2.04	3000	8.01	6.43	4.62	3.28	1.83	0.69		
CLEMPI	Papadopoulos (9)	1.18	3000	19.79	16.01	12.13	8.77	4.91	1.66		
CHEMBL	Papadopoulos (10)	0.91	3000	25.41	20.49	15.13	10.63	5.86	1.77		
	dAD (CV)	1.45	253	5.18 (.74)	3.70 (.68)	2.35 (.62)	1.47 (.53)	0.62 (.40)	0. (.15)		
	dAD (NN)	1.69	253	4.38 (.86)	3.11 (.86)	1.85 (.86)	1.13 (.86)	0.43 (.83)	0.15 (.57)		

				DTC (G	PCR; SSRI)				
Median Error rates per confidence level								el (%)	
Dataset	Approach	α_{δ}	#calib	75%	80%	85%	90%	95% CI	99%
GPCR	Shafer & Vovk (7)	1.13	1500	25.02	18.85	14.29	10.00	5.16	1.07
	Papadopoulos (8)	2.09	1500	13.62	11.24	9.02	7.46	6.02	4.82
	Papadopoulos (9)	1.15	1500	24.15	18.53	14.29	9.19	5.13	0.87
	Papadopoulos (10)	1.14	1500	25.28	18.93	14.93	10.44	6.18	1.28
	dAD (CV)	2.14	874	3.69 (.84)	2.98 (.81)	1.84 (.77)	1.12 (.70)	0.54 (.59)	0.1 (.58)
	dAD (NN)	2.25	874	3.72 (.94)	2.82 (.93)	1.77 (.90)	1.09 (.85)	0.45 (.78)	0.08 (.75)
SSRI	Shafer & Vovk (7)	1.05	1500	24.7	19.13	14.59	9.53	4.25	1.05
	Papadopoulos (8)	2.09	1500	10.21	8.17	6.15	3.83	2.06	1.24
	Papadopoulos (9)	1.13	1500	25.83	21.09	17.26	12.06	6.6	2.41
	Papadopoulos (10)	1.05	1500	24.57	19.69	15.33	9.87	4.7	1.21
	dAD (CV)	1.86	234	4.17 (.68)	3.15 (.63)	4.47 (.53)	1.56 (.47)	0.66 (.40)	0.23 (.21)
	dAD (NN)	2.02	234	3.98 (.89)	2.99 (.85)	2.09 (.81)	1.38 (.74)	0.63 (.67)	0.11 (.49)

Benchmarks

dAD (CV) vs. dAD (NN)

Concluding remarks

→ dAD depends on a sample specific calibration set;

→ Calibration set is defined by the conformity of test compounds and targets individually;

 Output consists of sample specific prediction regions, with no need for additional normalisation measures; Provides robust guarantees for suggested prediction regions, and more accurately reflects model performance in the training area close to the test sample;

→ Proved to be more effective for challenging prediction settings reflecting real use-case scenarios (S2 and S3).

Acknowledgements:

Research Cooperability Program of the Croatian Science Foundation, funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, through the **Grant 8525**: *Augmented Intelligence Workflows for Prediction, Discovery, and Understanding in Genomics and Pharmacogenomics.*

Croatian Government and the European Union (European Regional Development Fund — the Competitiveness and Cohesion Operational Program), through the project Bioprospecting of the Adriatic Sea (KK.01.1.1.01.0002), granted to *The Scientific Centre of Excellence for Marine Bioprospecting* — **BioProCro**.

Thank you for your attention!